444x^2-22=222+444

Simple and best practice solution for 444x^2-22=222+444 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 444x^2-22=222+444 equation:



444x^2-22=222+444
We move all terms to the left:
444x^2-22-(222+444)=0
We add all the numbers together, and all the variables
444x^2-22-666=0
We add all the numbers together, and all the variables
444x^2-688=0
a = 444; b = 0; c = -688;
Δ = b2-4ac
Δ = 02-4·444·(-688)
Δ = 1221888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1221888}=\sqrt{256*4773}=\sqrt{256}*\sqrt{4773}=16\sqrt{4773}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{4773}}{2*444}=\frac{0-16\sqrt{4773}}{888} =-\frac{16\sqrt{4773}}{888} =-\frac{2\sqrt{4773}}{111} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{4773}}{2*444}=\frac{0+16\sqrt{4773}}{888} =\frac{16\sqrt{4773}}{888} =\frac{2\sqrt{4773}}{111} $

See similar equations:

| 342=-6(8n-1) | | 69+-8y=21 | | −7x2−4x=0 | | 5(x+2)-8=5x | | a/2-6=12 | | x+70+60=180 | | 72u-2u=7u | | 6-4n-1=17 | | 444x^2444=1 | | 4n+7-6n=23 | | 72u-2u=72u | | 1/5x-2/3(5)=30 | | 444x^222+444=1 | | 17.5+4x=-6.5(3x+-6) | | 2x^2+1=2x+11 | | 12y=7y+10 | | -4=-x-3x | | -2(6+y)+2y=1 | | 6/7k-3=3/7(4K-7) | | 20=6m+2 | | 8x-4+3=8x-1 | | Z^2-(1+3i)Z-6+9i=0 | | 2(11/2a+12/5)=69/20+31/4a | | 1/2(3x-8+7x+4)=33 | | 444x^2=222+444 | | 2x-6(x-7)=40 | | 33=1/2(3x-8+7x+4) | | 444x^222=222+444 | | (4x-20)=(3x+7) | | 4(x+2)+6=9 | | (7x+6)+90+(6x-7)=180 | | 46=4t+10 |

Equations solver categories